forme sesquilinéaire
ALGEBRE
E étant un espace vectoriel sur le corps C des complexes, f une forme définie sur C (application de ExE dans C) est dite sesquilinéaire si elle satisfait aux conditions suivantes :
1) Elle est semi-linéaire par rapport à la première variable ; pour tout k de C et tous x, x’; y vecteurs de E f(x +kx’ , y) = f(x,y) +k–f(x’ , y), k– étant le conjugué de k .
2) Elle linéaire par rapport à la deuxième variable : pour tout k de C et x, y, y’ éléments de E on a f(x , y+ky’) = f(x,y) + kf(x,y’)