Quadrature. N° 113. p. 9-16. Stabilité et stabilisation de systèmes linéaires à l’aide d’inégalités matricielles linéaires.
Auteur : Barreau Matthieu
Résumé
Cet article étudie la stabilité de systèmes modélisés par une équation différentielle. Après des définitions générales, le cas particulier des systèmes linéaires invariants dans le temps est étudié beaucoup plus précisément et des conditions algébriques sont énoncées pour établir sa stabilité asymptotique. L’analyse de stabilité est aussi statuée via le théorème de Lyapunov, utilisant alors des algorithmes venant de la programmation semi-définie. Tous les résultats sont rigoureusement démontrés dans les cas généraux et un exemple d’application sur la stabilité d’une nacelle est proposé et enrichi au cours de l’exposé.
Notes
Quadrature est un magazine de mathématiques pures et appliquées. Il
s’adresse aux enseignants, étudiants, ingénieurs et amateurs de
mathématiques.
Tout internaute peut acheter le numéro en cours et les anciens numéros sur la site de la revue quadrature.info (ISSN de l’édition électronique : 1760-4826).
Une version texte intégral est en téléchargement sur le site https://hal.science/hal-02111784
Données de publication
Éditeur Quadrature Revigny-sur-Ornain , 2019 Format A4, p. 9-16 Index Bibliogr. p. 16-16
ISSN 1142-2785
Public visé élève ou étudiant, enseignant, tout public Niveau licence Âge 18, 19, 20
Type article de périodique ou revue, vulgarisation, popularisation Langue français Support papier
Classification