Recherches en didactique des mathématiques. Vol. 14/1-2. p. 165-210. Cabri-Géomètre constituant d’un milieu pour l’apprentissage de la notion de figure géométrique.
English Title : Cabri-geomètre: part of an environment to learn about the notion of geometric figure.
Deutscher Titel : NULL
Título Español : NULL
Auteurs : Laborde Colette ; Capponi Bernard
Résumé
L’étude présente concerne un milieu adidactique organise autour d’un EIAO. Cabri-Géomètre, en vue de l’apprentissage par des élèves de collège de la notion de figure géométrique. Par figure géométrique on entend ici les rapports entre un objet géométrique et les dessins qui lui sont associés. La construction de ces rapports requiert un apprentissage qui ne peut être spontané. Une hypothèse classique en didactique des mathématiques accorde un rôle crucial dans cet apprentissage a la confrontation des élèves a des situations-problèmes dans lesquelles le recours a l’analyse géométrique du (ou des) dessin(s) est un outil efficace de solution. De telles situations sont étudiées ici dans le cas de problèmes de construction géométrique. On cherche à déterminer a priori dans quelle mesure les situations construites autour de Cabri-Géomètre nécessitent un recours à des connaissances géométriques et quels processus conduisent à ce recours. La réalisation d’une situation expérimentale dont il est rendu compte amène a posteriori à souligner l’importance des interactions entre les aspects visuels et les aspects géométriques dans les situations construites autour de Cabri-Géomètre. Abstract The present study deals with a a-didactical milieu which is based on the software Cabri-geometre and aimed at the learning of the notion of geometrical figure. By geometrical figure we mean here the relationships between a theoretical object of geometry and the attached drawings. Constructing these relationships requires a learning which has to be organized. According to a classical hypothesis, this learning may be favoured when students are faced with situations in which a geometrical analysis of the drawing is an efficient tool of solution. Among such situations, we focused our attention to problems requiring a geometrical construction in the environment Cabri-geometre. We attempted to a priori determine to what extent these situations require a recourse to geometrical knowledge and what kind of processes bring the students to use geometrical knowledge. The analysis of an experimental situation, which is reported here, leads us to a posteriori emphasize the role of the interactions between visual and geometrical aspects in the situations based on Cabri-geometre. Zusammenfassung Die vorliegende Studie beschaeftigt sich mit einer a-didaktischen Umgebung, die auf der Software Cabri-geometre basiert und das Lernen des Begriffes « geometrische Figur » anzielt. Unter geometrischer Figur werden hier die Beziehungen zwischen dem theoretischen Objekt der Geometrie und zugeordneten Zeichnungen verstanden. Der Aufbau dieser Beziehungen erfordert eine entsprechende Lernorganisation. Gemaess einer klassischen Hypothese wird dieses Lernen gefoerdert, indem Lernende in Situationen versetzt werden, wo die geometrische Analyse der Zeichnung ein effizienter Weg zur Problemloesung ist. Hier wird sich auf die Konstruktionsaufgaben konzentriert. Man versucht, a priori zu bestimmen, in welchem Masse die mit Cabri-geometre zu loesenden Aufgaben einen Rueckbezug auf geometrische Kenntnisse erfordern und welche Prozesse zu solchen Bezuegen fuehren. Die Durchfuehrung einer experimentellen Studie, die aufgezeichnet wurde, fuehrt a posteriori zur Betonung der Bedeutung der Interaktionen visueller und geometrischer Aspekte. (ZDM/Mathdi) Resumen El presente documento hace referencia a un estudio concerniente al medio a-didactico organizado alrededor de un EIAO, Cabri-géomètre, a la vista del aprendizaje de la noción de figura geométrica por estudiantes de educación media. Por figura geométrica entendemos la relación entre un objeto geométrico y los diseños que le son asociados. La construcción de esta relación requiere de un aprendizaje que no puede ser espontáneo. Una hipótesis clasica en didactica de matemáticas asigna un rol crucial en este aprendizaje a la confrontación de los estudiantes a situaciones-problemas en las cuales el recurso del análisis del (de los) diseño (s) es un util eficaz de solución. De tales situaciones se estudia aqui el caso de los problemas de construcción geométrica. Buscamos determinar a priori en que medida las situaciones construidas alrededor de Cabri géomètre necesitan como recurso conocimentos geométricos y cuales procesos conducen a ese recurso. La realización de una situación experimental a la cual hacemos referencia nos lleva a posteriori a destacar la importancia de las interacciones entre los aspectos visuales y los aspectos geométricos en las situaciones contruidas alrededor de Cabri-géomètre. Riassunto NULL Resumo NULL
Notes
Vol. 14/1-2. Didactique et intelligence artificielle.
Recherche en Didactique des Mathématiques (RDM) est la revue de l’Association pour la Recherche en Didactique des Mathématiques (ARDM).
Une version texte intégral est en téléchargement sur le site Revue RDM – Recherches en Didactique des Mathématiques
Données de publication
Éditeur La Pensée Sauvage éditions Grenoble , 1994 Format 14 cm x 22 cm, p. 165-210 Index Bibliogr. p. 205-207
ISBN 2-85919-097-X EAN 9782859190972 ISSN 0246-9367
Public visé chercheur, enseignant, formateur
Type article de périodique ou revue Langue français Support papier
Classification