convergence presque sûre

PROBABILITES

Soit Y une variable aléatoire et ( Xn ) n≥ 1 une suite de variables aléatoires réelles toutes définies sur un même espace de probabilité fondamental (Ω, F, P).
On dit que la suite de variables aléatoires ( Xn ) n≥ 1 converge presque surement vers la variable aléatoire Y , si P(Δ Y) = 0 où Δ Y désigne l’évènement des ω ∈ Ω tels que la suite réelle Xn(ω) ) n≥ 1 ne converge pas vers Y(ω).