1997 Repères-IREM. N° 29. p. 15-26. Legendre approxime en classe de seconde ?
Auteur : Métin Frédéric
Il y a 58 résultats avec cette recherche.
1997 Repères-IREM. N° 29. p. 15-26. Legendre approxime en classe de seconde ?
Auteur : Métin Frédéric
1997 Repères-IREM. N° 29.
2005 Les cahiers de l’IREM d’Orléans. N° 3. Histoire d’aires.
Auteurs : IREM d'Orléans Groupe Culture scientifique ; Diagne Malik ; Latouche Serge ; Lelong Alain ; Leroy Annette ; Van den Boom Isabelle ; Vidal Claudine
1979 Mathématique élémentaire d’un point de vue algorithmique.
Auteurs : Engel Arthur ; Reisz Daniel. Trad.
1977 L’Ouvert. N° 11.
Auteur : IREM de Strasbourg L'Ouvert. Dir.
2016 Le grand roman des maths.
Auteur : Launay Mickaël
2012 Le nombre d’Archimède : pi.
Auteur : Deledicq André
Auteur : Delahaye Jean-Paul
2000 Maths pour tous. T. 1. Histoires de maths.
Auteurs : Deledicq André ; Izoard Dominique. Illust.
2019 Histoires de maths.
Auteurs : Deledicq André ; Izoard Dominique. Illust.
2015 Bibliothèque Tangente. N° 30. Edition 2015. Archimède, le quadrateur. p. 92-95.
Auteur : Lehning Hervé
1994 Galion thèmes. Série n° 2. Autour de pi.
Auteur : Galion E.
1994 Galion thèmes. Série n° 2. Le nombre pi.
Auteur : Galion E.
2017 Tangente. N° 178. p. 28-29. A peu près pi.
Auteur : Rittaud Benoît
2007 Tangente Hors-série. N° 30. Histoire des mathématiques de l’Antiquité à l’an Mil.
Auteur : Busser Elisabeth. Dir.
2005 Cosinus. N° 58. p. 20-27. Pi != 3,1416 !
Auteur : Reuiller Guillaume
1999 Tangente Hors-série. N° 8. p. 68-70. La quadrature de la parabole.
Auteur : Lehning Hervé
2007 Bibliothèque Tangente. N° 30. Archimède, le quadrateur. p. 80-83.
Auteur : Lehning Hervé
2007 Tangente Hors-série. N° 30. p. 16-18. Archimède, le quadrateur.
Auteur : Lehning Hervé
1980 Le petit Archimède. N° 64-65. Supplément. Numéro spécial « pi ».
Auteur : Herz Jean-Claude. Dir.
1993 Le nombre Pi.
Auteur : Herz Jean-Claude. Dir.
Auteur : Chevalier Anne
1991 Histoire des mathématiques en première et terminale.
Auteur : Nouet Monique
2002 Aix Marseille Vert. N° 8. p. 3-11. Une approche expérimentale de PI.
Auteur : Bonnet André