suite logique
AUTRES DISCIPLINES
Très répandues dans les tests psychométriques, les suites logiques demandent de trouver le terme suivant ou le terme manquant d’une suite dont les premiers termes sont donnés. Certaines comme la suite de Conway ou la suite d’Aronson sont bien connues.
Il s’agit de trouver « le » raisonnement qui a conduit à l’élaboration de la suite donnée, et ces tests sont censés analyser les capacités de logique et de raisonnement.
Cependant, en mathématiques, la donnée de quelques termes ne permet pas de connaître la récurrence permettant de passer d’un terme au suivant. Donnons-en un exemple.
On considère les nombres 2, 4, 8, 16. Quel est le nombre suivant ? Le raisonnement le plus simple consiste à reconnaître les puissances de 2 et répondre 32.
Pourtant considérons la construction suivante : on place n points sur un cercle et on les joint deux à deux (trois cordes n’étant jamais concourantes). Pour 2 points on détermine ainsi 2 régions ; pour 3 points 4 régions ; pour 4 points 8 régions ; pour 5 points 16 régions ; et pour 6 points 31 régions. En effet ici la formule est Rn = 1 + n(n-1)[(n-2)(n-3)+12)]/24. On trouve la solution dans le numéro 24, de décembre 1990, du Petit Vert
http://apmeplorraine.fr/old/index.php?module=petitvert&page=archive_pv