trigonométrie sphérique
GEOMETRIE
La trigonométrie sphérique est la branche des mathématiques qui étudie les relations entre les distances et les angles pour les triangles sphériques c’est à dire définis sur la sphère par des arcs de grands cercles reliant trois points deux à deux.
La somme des angles d’un triangle sphérique est comprise entre π et 3π. Les formules de trigonométrie euclidienne ne d’appliquent évidemment pas.
Désignons par A, B et C trois points de la sphère,
les côtés a, b et c du triangle sphérique sont exprimés en distance sphérique, c’est-à-dire la mesure en radians de l’arc de grand cercle correspondant,
les angles sont notés A∼, B∼, C ∼.
L’une des formules fondamentales est a formule des cosinus :
cos a = cos b.cos c + sin b.sin c.cosA∼
et la relation duale : cosA∼ = -cosB∼.cosC∼ + sinB∼.sinC∼.cos a
(et celles obtenues par permutation circulaire)
La trigonométrie sphérique est utilisée en astronomie et en navigation.