CultureMATH. La transformation du boulanger.
Auteur : Vidiani Lazare Georges
Résumé
Un petit film de P. Trivic (la Tempête) dans le cadre du « quart-d’heure mathématique » sur les systèmes mélangeants, commenté par le savant géomètre Marcel Berger, diffusé sur la 7 le 24 novembre 1990 à 22h30, présentait une séquence particulièrement percutante : Le portrait de Poincaré -initiateur de la théorie du Chaos- était déstructuré par une transformation dite de la pâte feuilletée (on étale la pâte initialement en carré, et on replace les morceaux débordants pour reconstituer le carré). Puis -oh miracle- au bout de 241 opérations dé-structurantes, le portrait de Poincaré réapparaissait « intact ». Le but de cet article est d’expliquer ce qui se passe, en utilisant algèbre linéaire (matrice) et arithmétique (mise en évidence de la période), en l’illustrant sur une image de papillon déstructuré puis ressuscité.
Notes
Cet article est sous la rubrique « Thèmes ».
CultureMATH fait partie des Sites Ressources de la Direction de l’Enseignement Scolaire (DESCO) et des Ecoles Normales Supérieures.
Cet article est en libre accès sur le site CultureMATH
Données de publication
Éditeur CultureMATH – ENS Ulm Paris , 2006 Format A4, 8 p. Index Bibliogr. p. 5
Public visé enseignant, tout public Niveau licence Âge 18, 19, 20
Type monographie, polycopié Langue français Support internet
Classification