CultureMATH. Géométrie non arguésienne dynamique.

Implémentée avec CaRMetal

Auteur : Martin Yves

Résumé

Lors de son axiomatisation de la géométrie euclidienne, dans ses Fondements de la géométrie, Hilbert a montré l’importance de la configuration de Desargues pour obtenir une géométrie affine. On appelle depuis « non arguésienne » une géométrie plane qui ne vérifie pas le théorème de Desargues. Le modèle le plus simple est le plan de Moulton (1902). En dehors de questions sur les fondements de la géométrie projective, avec les travaux Ruth Moufang vers 1933, la géométrie non arguésienne en général, et celle du plan de Moulton en particulier, n’ont jamais fait l’objet d’une étude spécifique, le traitement algébrique ne se prêtant pas à sa singularité. Mais depuis quelques années, les possibilités de modélisation des logiciels de géométrie dynamique récents comme CaRMetal permettent d’explorer cette géométrie sans difficulté. C’est ce que propose cet article. On y verra tout d’abord en quoi l’absence de la configuration de Desargues rend inopérant le concept de milieu quand il est considéré comme affine. Ensuite, la géométrie de Moulton vérifiant tous les autres axiomes de la géométrie euclidienne, nous pouvons effectuer des investigations sur les concepts d’angle, d’orthogonalité et de distance. Contrairement à la typologie associée aux angles pour les géométries usuelles (hyperboliques, euclidienne, elliptique) pour lesquelles la somme des angles triangles sont respectivement inférieure, égale ou supérieure à deux droit, dans le plan de Moulton, les 3 configurations se rencontrent. L’orthogonalité y est, elle aussi, est bien particulière puisque d’un point il peut ne pas passer de perpendiculaire à une droite donnée ou en passer deux – et deux seulement. La distance (ou semi distance selon les auteurs) n’est pas une métrique : l’inégalité triangulaire n’y est pas vérifié ce qui induit des résultats assez surprenants non seulement sur les triangles, mais aussi sur la distance d’un point à une droite.

Utilisation dans l’enseignement – Cette présentation simple d’une géométrie inhabituelle présente un grand intérêt pédagogique à plusieurs niveaux de l’enseignement. La simple manipulation des figures dynamiques peut permettre de faire sentir à des élèves de terminale ou à des étudiants de première année ce qu’est un système axiomatique. Dans un contexte de formation initiale des enseignants au sein d’un module de géométrie, mais aussi pour un questionnement didactique en formation continue, les figures de cet article sont l’occasion de travailler – outre les propriétés détaillées ci-dessus – le sens des axiomes de congruence, en particulier sur le fait qu’ils ne sont pas nécessairement liés à l’existence du mouvement dans la géométrie ainsi décrite. La géométrie de Moulton vérifie tous les axiomes de Hilbert, y compris les axiomes de congruence de segments, sauf celui (de congruence sur les angles) qui aboutit au théorème de Desargues. Pourtant dans cette géométrie, aucune translation, aucun déplacement ne vient appuyer les axiomes de congruences sur les segments : ces axiomes ne sont en rien liés au mouvement.

Notes

Cet article est sous la rubrique « Thèmes ».

CultureMATH fait partie des Sites Ressources de la Direction de l’Enseignement Scolaire (DESCO) et des Ecoles Normales Supérieures.

Cet article est en libre accès sur le site CultureMATH

Données de publication

Éditeur CultureMATH – ENS Ulm Paris , 2007

Public visé élève ou étudiant, enseignant, tout public

Type monographie, polycopié Langue français Support internet

Classification