Bulletin de l’APMEP. N° 417. p. 444-457. Faire de la géométrie en jouant avec Cabri-Géomètre : le cas de l’orthocentre.

English Title : The making of geometry with Cabri-Geometre: the case of the orthocentre. (ZDM/Mathdi)

Une version texte intégral est en téléchargement sur le site Bibliothèque numérique des IREM et de l’APMEP  Télécharger 

Auteur : Cuppens Roger

Résumé

L’article étudie quelques lieux géométriques de l’orthocentre d’un triangle lorsque deux des sommets sont fixés et le troisième parcourt une courbe donnée.

Abstract

There are two given fixed points in a plane. A moving poing $P$ forms a triangle with the first two points. The orthocentre $Q$ of the triangle is drawn. The mapping of Q to P can be investigated in detail using the new version of Cabri-Geometre. Interesting insights into conic sections are obtained as well. (ZDM/Mathdi)

Zusammenfassung

Gegeben seien zwei feste Punkte in der Ebene. Ein beweglicher Punkt P bildet zusammen mit diesen beiden Punkten ein Dreieck, dessen Hoehenschnittpunkt Q gezeichnet wird. Die Abbildung, die dem Punkt P den Bildpunkt Q zuordnet, kann mit Hilfe der neuen Version des Cabri-Geometre ausfuehrlich untersucht werden. Dabei koennen auch ueberraschende Einsichten ueber Kegelschnitte gewonnen werden. (ZDM/Mathdi)

Notes

Cet article est publié sous la rubrique « Dans nos classes ».

Le Bulletin de l’APMEP (appelé « Bulletin Vert ») s’efforce, par des articles de fond : de couvrir l’actualité de l’enseignement des mathématiques de la maternelle à l’université, de contribuer à la formation approfondie des enseignants, d’entretenir, chez ceux-ci, l’esprit de recherche et de susciter des échanges avec ses lecteurs.
Il paraît 5 fois par an de sa création à 2018, année où suite à un changement de politique éditoriale, l’APMEP publie une revue unique Au Fil des Maths – le Bullletin de l’APMEP.

Données de publication

Éditeur Association des Professeurs de Mathématiques de l’Enseignement Public (APMEP) Paris , 1998 Format A5, p. 444-457 Index Bibliogr. p. 457-457
ISSN 0240-5709

Public visé chercheur, enseignant, formateur Niveau 1re, 2de, lycée, terminale Âge 15, 16, 17

Type article de périodique ou revue Langue français Support papier

Classification