Pour la Science. Dossier N° 74. p. 82-86. L’histoire mouvementée des cycles limites.

Auteur : Ghys Etienne

Résumé

Cet article présente le 16e problème de Hilbert, problème non résolu qui porte sur le nombre de cycles limites des équations différentielles dans le plan : son histoire révèle le rôle des erreurs dans le développement des mathématiques. L’auteur y définit le comportement d’une équation différentielle, d’après les observations de Poincaré et propose un historique des démonstrations tentées par les mathématiciens, dont les erreurs ont permis d’aboutir à de nouveaux théorèmes.

Notes

Cet article est publié dans Dossier Pour la Science : Les grands problèmes mathématiques.
Une nouvelle version est publiée dans Destination Systèmes dynamiques avec Poincaré , dans Images des Mathématiques

Données de publication

Éditeur Pour la Science Paris , 2012 Format A4, p. 82-86
ISSN 1246-7685

Public visé tout public

Type article de périodique ou revue, vulgarisation, popularisation Langue français Support papier

Classification