CultureMATH. François Viète (1540-1603).

Résumé

Cet article propose une notice biographique et diaporama sur la vie et l’oeuvre de François Viète (1540-1603).

Magistrat né à Fontenay-le-Comte, conseiller et Maître des Requêtes du Roi de France, Viète était un mathématicien amateur.
On lui doit cependant une invention capitale : le calcul littéral qu’il expose dans un bref ouvrage, « Introduction à l’Art Analytique ou Algèbre Nouvelle » , imprimé à Tours en 1591. La nouveauté, c’est que c’est un calcul sur les grandeurs en général désignées par des lettres : voyelles majuscules A, E, I, O, U, Y pour les grandeurs inconnues, consonnes majuscules B, C, D… pour les grandeurs connues. Viète, à travers ses écrits et ses exploits, montre la puissance de son Algèbre nouvelle à laquelle il assigne pour but de résoudre tous les problèmes. Ce calcul littéral, repris et amélioré par Descartes, va permettre un développement fulgurant de toutes les sciences à partir du 17e siècle.
Les oeuvres de Viète, écrites en latin, sont d’un accès difficile, et il y a peu de choses traduit en français.

Viète est connu :
– en astronomie pour son Canon mathématique, un recueil de tables trigonométriques, plusieurs fois réédité ;
– en cryptographie, pour avoir décrypté des lettres réputées indéchiffrables ;
– dans l’histoire du calendrier, pour avoir proposé un calendrier grégorien ;
– dans l’histoire du nombre pi, pour avoir donné une approximation de pi, pour la première fois, à partir d’un produit infini ;
– en algorithmique, pour ses techniques de résolution numérique des équations ;
– en géométrie pour avoir reconstruit la solution perdue d’un problème d’Apollonius (construire un cercle tangent à trois cercles donnés) ;
– en algèbre pour avoir explicité les relations entre les coefficients d’une équation polynôme et ses racines.
Par contre, on connaît moins ce qu’il considérait comme une de ses plus merveilleuses découvertes : les formules et les équations permettant de couper un angle en n parties égales. Ce qui lui permit de résoudre, le 10 octobre 1594, en trois heures, le défi d’Adrien Romain à tous les mathématiciens de la Terre : résoudre une équation du quarante cinquième degré !

Notes

Cet article est sous la rubrique « Thèmes ».

CultureMATH fait partie des Sites Ressources de la Direction de l’Enseignement Scolaire (DESCO) et des Ecoles Normales Supérieures.

Cet article est en libre accès sur le site CultureMATH

Données de publication

Éditeur CultureMATH – ENS Ulm Paris , 2007

Public visé élève ou étudiant, enseignant, tout public

Type monographie, polycopié Langue français Support internet

Classification