Tangente Hors-série. N° 92. p. 18-20. Les quadrilatères convexes.

Résumé

Trois côtés déterminent entièrement un triangle, à l’orientation près. Avec quatre côtés, les possibilités de construction d’un polygone sont infinies. Malgré tout, de nombreuses propriétés générales peuvent être établies pour des quadrilatères convexes quelconques. Dans cet article, l’auteur présente les théorèmes de Ptolémée, de Varignon, de Wittenbauer ainsi que la formule de l’aire qu’Euler a découverte en 1748.

Notes

Cet article est publié sous la rubrique « Savoirs ».
Il fait partie du dossier : Sous plusieurs angles dans Tangente Hors-série n° 92 – Les trésors des polygones .

Données de publication

Éditeur Editions POLE Paris , 2024 Format A4, p. 18-20
ISSN 1294-9949

Public visé élève ou étudiant, enseignant, tout public Niveau 1re, 2de, licence, lycée, terminale Âge 15, 16, 17, 18, 19

Type article de périodique ou revue, vulgarisation, popularisation Langue français Support papier

Classification