Généalogie des mathématiques.
Auteur : Séguy-Duclot Alain
Résumé
Ce livre étudie le devenir des mathématiques occidentales depuis la mise en place du projet rationaliste par Pythagore, dont le rêve de fondation de l’ontologie sur des principes arithmétiques s’est heurté à la crise des grandeurs irrationnelles.
Dans une première partie intitulée « Remise en cause de la fondation aristotélico-euclidienne des mathématiques », l’ouvrage commence par suivre la construction des mathématiques occidentales, avec l’école de Pythagore et la fameuse « crise des irrationnels ». Il enchaîne avec la théorie de la démonstration d’Aristote, et avec son application à la géométrie par Euclide.
Le développement des mathématiques restera ensuite en sommeil en Europe, jusqu’à ce que les travaux des Grecs soient redécouverts, enrichis de ceux des mathématiciens du monde arabo-musulman. Ils permettront l’émergence d’une nouvelle étape menant à la naissance de l’algèbre (avec Viète) puis à la découverte des nombres complexes. Vient une première « déseuclidation » de la géométrie et de l’arithmétique avec l’invention de la géométrie algébrique, puis celle du calcul différentiel, qui mènera à la fin de la crise des irrationnels grâce à Cantor et Dedekind. L’auteur décrit ensuite une seconde « déseuclidation », avec la découverte des géométries non euclidiennes et la tentative de réunification des mathématiques dans l’algèbre structurelle.
L’ouvrage s’attaque après à la « désaristotélisation » de la logique (avec Frege), quand les liens entre l’arithmétique, la logique et la théorie des ensembles ont été établis, puis à la « déseuclidation » de l’axiomatique.
Les paradoxes liés à la théorie des ensembles et les difficultés liées à la notion d’infini non dénombrable conduiront à l’intuitionnisme de l’école de Brouwer. Le théorème d’incomplétude de Gödel ruinera définitivement l’espoir d’une théorie mathématique unifiée et complète, sans énoncé indécidable. Il faut alors renoncer à considérer les mathématiques comme un édifice pyramidal fini, voire même comme un océan infini sur lequel voguerait le bateau des mathématiciens : la reine des sciences ressemble plutôt à un multigraphe non connexe et non orienté, avec des branches infinies et des boucles, voire des cycles.
Notes
Cet ouvrage est l’objet d’une présentation sous la rubrique « Notes de lecture » de la revue Tangente n° 189.
Cette ressource est en ligne sur le site https://spartacus-idh.com/liseuse/042
Données de publication
Éditeur Spartacus IDH Paris , 2019 Collection Spartacus supérieur – Nouvelles visions des sciences Format 18 cm x 24 cm, 498 p. Index Bibliogr. p. 459-473, Notes bibliogr., Index
ISBN 2-36693-042-9 EAN 9782366930429 ISSN 2261-933X
Public visé tout public
Type ouvrage (au sens classique de l’édition), vulgarisation, popularisation Langue français Support papier
Classification
Mots-clés