Histoires de problèmes. Histoire des mathématiques. Le problème brachistochrone ou la recherche de la courbe de descente la plus rapide. p. 179-198.
English Title : The Brachistochrone problem. (ZDM/Mathdi)
Auteur : Chabert Jean-Luc
Résumé
Rubriques de l’article : Abstract The Brachistochrone Problem, a priori a simple game for mathematicians, turns out in the end to be a considerable problem. Indeed, the different approaches tried out in its solution may be considered, in a more or less direct way, as the starting point for new theories. While the true »mathematical » demonstration involves what we now call the Calculus of Variations, a theory for which Euler and then Lagrange established the foundations, the solution which Jean Bernoulli originally produced, obtained with the help of an analogy with the law of refraction on Optics, was empirical. A similar analogy between Optics and Mechanics reappears when Hamilton applied the principle of least action in Mechanics which Maupertuis justified in the first instance, on the basis of the laws of Optics. This correlation finally suggested to de Broglie and Schroedinger the idea of Wave Mechanics as an analogy of Wave Optics. This article is aimed at teachers of mathematics and other disciplines for use as a means of introducing a historical perspective into the teaching of mathematics. It also contains exercises to be solved according to ancient and modern methods. The chapter ends with a bibliography which contains, in addition to the historical sources that have been used, a certain number of books recommended for further study of the subject. (ZDM/Mathdi)
Le problème
– Galilée et la chute des corps
– La réflexion/la réfraction
– La démonstration de Jean Bernoulli
– La construction newtonienne
– Analogies avec les énoncés de Galilée
– Le calcul des variations
– Euler et Lagrange
– Maupertuis et le principe de moindre action
– L’Optique et la Mécanique
– Optique et mécanique ondulatoires
Notes
Chapitre de l’ouvrage Histoires de problèmes. Histoire des mathématiques.
Pistes d’utilisation en classe
Cette ressource peut être utilisée en formation initiale des enseignants.
Données de publication
Éditeur Ellipses Paris , 1993 Collection IREM – Epistémologie et Histoire des Maths Format 17,5 cm x 26 cm, p. 179-198
ISBN 2-7298-9368-7 EAN 9782729893682 ISSN 1298-1907
Public visé enseignant, formateur Niveau licence, lycée, terminale Âge 17, 18, 19
Type chapitre d’un ouvrage Langue français Support papier
Classification
Mots-clés