Des nombres au collège.
Parcours vers le réel…
Auteurs : Commission inter-IREM Collège ; Lanata Fabienne. Dir. ; Paillet Vincent. Dir. ; Cori René. Préf.
Résumé
La Commission Inter-IREM Collège poursuit dans cet ouvrage, centré sur l’introduction des nombres, la mise à disposition des enseignants d’articles de réflexion et de propositions d’actions pour les classes. Après une présentation par Fabienne Lanata et Vincent Paillet, responsables de la commission, René Cori, président de l’ADIREM, Directeur de l’IREM de Paris 7 stigmatise dans sa préface, une certaine tentation de retour à des méthodes d’enseignement d’un autre âge, « en totale contradiction avec la démarche qui a toujours été celle des IREM et de l’APMEP , […] qui exige […] questionnement […] adaptation […] expérimentation […] réflexion » … ; démarche qui induit que « l’enseignement des mathématiques, à quelque niveau que ce soit, n’est pas une simple formalité qu’on pourrait confier au premier répétiteur venu ! » Il nous indique ensuite que l’ »ouvrage est structuré en quatre grandes parties, précédées d’un article introductif général qui nous donne quelques outils conceptuels importants permettant d’éclairer l’ensemble. Chacune des trois premières parties est ensuite consacrée à une classe importante de nombres (rationnels, relatifs, irrationnels). […] dans chaque cas, la question traitée fait l’objet d’un tour d’horizon assez complet. Chaque partie est organisée suivant les niveaux d’exposition étudiés, ce qui permettra au lecteur intéressé par un niveau donné d’aller droit au but. Une quatrième partie, particulièrement opportune, vient faire une synthèse de ce qui précède, sous la forme d’un bilan sur la notion de nombre après les apprentissages de la classe de troisième, bilan recommandé par le programme officiel. » Sommaire : * Article introductif * Partie 1 : Les rationnels * Partie 2 : Les relatifs * Partie 3 : Les irrationnels * Partie 4 : Un bilan sur les nombres au collège
On peut introduire les nombres en accompagnant les élèves dans une visite, comme on visiterait une forêt. Prêtons l’oreille à ce qu’un « grand » expliquerait à un petit : « Tu vois, ici il y a des nombres formés de deux entiers séparés par une virgule : ce sont des décimaux. Là, ils sont séparés par une barre : ce sont des fractions. Ceux avec un drôle de chapeau : ce sont des racines et l’autre tout seul, au fond, on dit qu’il est utile aux sages… c’est pi ! »
Cette métaphore est bien sûr caricaturale. Néanmoins, l’exemple de l’introduction dans les programmes de la racine carrée en quatrième par appui sur la touche … peut conduire, par manque de problématisation, à des conceptions naïves assez proches de celles énoncées ci-dessus.
La pratique du « bain numérique », au delà d’une reconnaissance superficielle, conduit à des obstacles qui restent prégnants tout au long de la scolarité. Nous avons choisi une tout autre approche. Il s’agit d’aller à la racine des arbres de la forêt numérique, de voir sur quel terreau ils poussent, c’est-à-dire quels problèmes amènent à l’utilisation de nouveaux nombres, justifiant ainsi leur introduction et leur forme spécifique d’écriture.
Dans un premier article, Dominique Bénard fixe le cadre de la réflexion. Il survole l’ensemble de la forêt, illustrant les continuités, pointant les ruptures là où un problème va rendre nécessaire un saut dans la conception des nombres.
C’est dans cet esprit qu’a été élaboré un ensemble cohérent d’activités où les nouveaux nombres apparaissent comme réponse à un manque. Par exemple, dans le domaine numérique, les entiers ou les décimaux ne permettent pas de compléter certaines égalités. Dans le domaine géométrique, les décimaux ne permettent pas de repérer certains points de la droite graduée, il faut passer aux rationnels pour combler (en partie) cette lacune. Les rationnels montrent aussi leurs limites quand il faut trouver le côté d’un carré d’aire double d’un carré donné.
La fin du collège étant l’occasion d’un bilan, les deux derniers textes proposent des manières de l’effectuer.
– Nombres et calculs au collège par Dominique Benard
– Reconstruction des nombres décimaux par Annick Massot et Georges Pons
– Saut de puce par le groupe didactique de l’IREM d’Aquitaine
– Introduction de la somme de deux nombres en écriture fractionnaire par Vincent Paillet et Mireille Sauter
– Des équations pour introduire les nombres relatifs par le groupe didactique de l’IREM d’Aquitaine
– Des déplacements pour introduire les nombres relatifs par Christian Judas et Georges Pons
– En troisième : La racine carrée au collège par Jean-Claude Fénice, Guillaume François, Fabienne Lanata, Béatrice Legoupil-Frackowiak et Dominique Poiret
– En troisième : synthèse sur les nombres au collège par Annick Massot et Georges Pons
– En troisième : Des exposés… pour lire, écrire et dire sur les mathématiques par Annick Massot et Georges Pons
Notes
Cette publication est l’objet d’une présentation dans le Bulletin de l’APMEP n° 478.
Données de publication
Éditeur Association des Professeurs de Mathématiques de l’Enseignement Public (APMEP) Paris , 2008 Collection Publication de l’APMEP Num. 181 Format 17cm x 24cm, 104 p. Index Bibliogr. p. 103
ISBN 2-912846-57-9 EAN 9782912846570 ISSN 0291-0578
Public visé enseignant, formateur Niveau 3e, 4e, 5e, 6e, collège Âge 11, 12, 13, 14
Type document pour la classe issu de travaux de groupe de travail Langue français Support papier
Classification
Mots-clés